
1.  Introduction
Communities and ecosystems worldwide rely on snowpacks to meet water demands (Immerzeel et al., 2020). 
A warming climate changes the spatial patterns and timing of snowpack accumulation and melt by altering 
rain-snow partitioning, decreasing cold content and extending dry spell length (Gershunov et al., 2019; Lynn 
et al., 2020; Siirila-Woodburn et al., 2021). During the dry season, reduced snowpack combined with warming 
and drying enhances evaporative demand (Abatzoglou & Williams, 2016; Alizadeh et al., 2021) and lowers fuel 
moisture (McEvoy et al., 2019).

A warming, drying, and disturbance-prone climate combined with fire suppression and exclusion promotes severe 
wildfire at high elevations in the western U.S. (Millar & Stephenson, 2015). From 1984 to 2017, a 9% increase 
per year in area burned in the seasonal snow zone (Gleason et al., 2019) has been accompanied by a 7.6 myr −1 
upslope increase in average wildfire elevation (Alizadeh et al., 2021). High burn severity areas also increased 
during these decades in the western U.S. (Parks & Abatzoglou, 2020).

Abstract  Increasing wildfire and declining snowpacks in mountain regions threaten water availability. 
We combine satellite-based fire detections with snow seasonality classifications to examine fire activity in 
California's seasonal and ephemeral snow zones. We find a nearly tenfold increase in fire activity during 2020–
2021 versus 2001–2019. Accumulation season broadband snow albedo declined 25%–71% at two burned sites 
(2021 and 2022) according to in-situ data relative to un-burned conditions, with greater declines associated with 
increased burn severity. By enhancing snowpack susceptibility to melt, both decreased snow albedo and canopy 
drove midwinter melt during a multi-week dry spell in 2022. Despite similar meteorological conditions in 
December–February 2013 and 2022–linked to persistent high pressure weather regimes–minimal melt occurred 
in 2013. Post-fire snowpack differences are confirmed with satellite measurements. With growing geographical 
overlap between wildfire and snow, our findings suggest California's snowpack is increasingly vulnerable to the 
compounding effects of dry spells and wildfire.

Plain Language Summary  Satellite fire detections indicate substantial increases in wildfire 
activity in California's snow-covered landscapes during 2020 and 2021, suggesting wildfire is increasingly 
altering mountain hydrology. During 2022, a multi-week mid-winter drought, or dry spell, occurred. A 
meteorologically-similar dry spell occurred in 2013, and the 2022 event provides a test case to examine how 
post-fire changes (canopy loss and deposition of burned dark material on snowpack) alter snowmelt patterns. 
Using field observations, weather station data, and satellite remote sensing of snow, we find large reductions in 
snow albedo and canopy cover drove rapid melt during the 2022 dry spell in burned areas whereas during 2013, 
minimal melt occurred. The societal connection between mountains and humans will be strained as mountains 
face increasing climate-related stressors. Midwinter drought, snow loss, and increasing wildfire are expectations 
of a warming world. Addressing these challenges requires innovative water and forest management paradigms. 
Our findings motivate additional research into assessing and planning for post-fire hydrologic changes in 
snow-dominated landscapes as both wildfire and dry spells will increase in frequency with climate warming.
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Severe fires alter mountain snowpack processes near and below the treeline in two key ways. First, the decrease in 
forest canopy reduces interception of snowfall and increases incoming solar radiation. Every 20% increase in tree 
mortality increases below-canopy snow accumulation by 15% (Maxwell & Clair, 2019). Second, the black carbon 
deposited on the snow surface from standing burned vegetation reduces the snow albedo, which, combined with 
additional incoming solar radiation, accelerates snowmelt rates by up to 57% (Aubry-Wake et al., 2022; Gleason 
& Nolin, 2016; Gleason et al., 2013, 2019; Kaspari et al., 2015; Skiles et al., 2018).

Additional wildfire impacts on mountain hydrology include changes in soil hydraulic properties (Ebel & 
Moody, 2017), shifts in surface and subsurface water partitioning and flow pathways that increase water yields 
(Maina & Siirila-Woodburn, 2020), and forest structure (e.g., Moeser et al., 2020; Wilson et al., 2021). By alter-
ing the snow-vegetation-hydrology dynamics, severe fire in montane forests threatens ecosystems and the volume 
of snowpacks (Gleason et al., 2019; Siirila-Woodburn et al., 2021; Stevens, 2017). In the absence of fire, reduced 
canopy shifts the timing of peak snowpack later (Cristea et al., 2014). While it is well documented that spring 
snowmelt rates increase after wildfire (e.g., Gleason et al., 2019; Uecker et al., 2020), the mid-winter impacts 
remain understudied.

Our work is motivated by two recent phenomena adversely affecting California's snow hydrology: widespread 
severe wildfires of 2020–2021 reaching into the seasonal snow zone of mountain watersheds (Figure 1) and the 
multi-week, midwinter dry spell (hereafter MWDS) during the winter of 2022. We examine how the post-fire 
environment during the unusually dry conditions amplified snowmelt rates. We hypothesize that fire-impacted 
regions undergo declines in midwinter snow albedo that drive more rapid and earlier snowmelt compared with 
pre-fire or unburned conditions.

2.  Methods
To assess impacts of MWDSs on post-fire environments, we examined data from three fires: The 2021 Caldor 
(89,773 ha; ignited 14 August) and Dixie Fires (389,837 ha; ignited 13 July) and the 2020 Creek Fire (153,738 ha; 
ignited 4 September) (Figure 2a).

2.1.  Satellite Fire Detection in Seasonal and Ephemeral Snowpacks

Wildfire activity and outcomes are difficult to quantify (e.g., Andrews & Rothermel, 1982; Cheney, 1990; Justice 
et al., 2002; Keeley, 2009). Satellite-based fire detection is a useful proxy for generally assessing wildfire activ-
ity by providing consistent overflight return intervals across multiple years (Justice et al., 2002). We acquired 
daily fire detections at 1-km horizontal resolution from the MODerate resolution Imaging Spectroradiometer 
(MODIS) via the Fire Information for Response Management System database (https://firms.modaps.eosdis.
nasa.gov) for the period spanning January 2001–December 2021. We subset all Californian fire detections into 
seasonal, ephemeral, and non-snow environments based on the concept of snow seasonality (Hatchett,  2021; 
Petersky & Harpold, 2018): the duration of time a landscape is continuously snow-covered. To assess seasonal-
ity, we applied the snow classifiers to a gridded, 4-km horizontal resolution, daily snow water equivalent (SWE) 
product (Broxton et al., 2019; Zeng et al., 2018) across California. Seasonal snowpacks are defined as grid cells 
with an annual median of at least 60 days of continuous snow cover spanning 1982–2018. Ephemeral snowpacks 
are defined as grid cells with intermittent (i.e., <60 days of continuous) snow cover.

2.2.  Snow Remote Sensing

Daily observations of snow cover days, snow-covered fraction, and snow albedo in the Caldor Fire region are 
derived from Terra MODIS and are available from the Snow Today website (https://nsidc.org//snow-today). 
Initial estimates of snow surface properties are based on the MODIS Snow Covered Area and Grain size model 
(MODSCAG; Painter et al., 2009) and the MODIS Dust Radiative Forcing in Snow model (MODDRFS; Painter 
et al., 2012). Data from the two models are combined to create spatially and temporally complete (STC) daily 
images that account for forest canopy, off-nadir viewing, and cloud misidentification (Rittger et  al.,  2020). 
Snow cover errors from MODSCAG are half the size of standard MODIS products (Rittger et  al.,  2013) 
and albedo estimates from STC-MODSCAG/MODDRFS show 5% RMSE with no bias (Bair et  al.,  2019). 
STC-MODSCAG/MODDRFS data have been previously used for SWE reconstruction (Bair et  al.,  2016; 

https://firms.modaps.eosdis.nasa.gov
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Figure 1.  (a) Annual fire detections subset by snow seasonality (snow zone). (b) Snow seasonality classifications for 
California. (c) All fire detections (2001–2021), colored by snow seasonality classification: blue (seasonal), red (ephemeral), 
and gray (non-snow zone). Fire detections in seasonal (blue) and ephemeral (red) snow zones during (d) 2001–2019 and (e) 
2020–2021, noting fires named in the text.
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Figure 2.
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Rittger et al., 2016), real-time estimates of SWE (Bair et al., 2018), estimating trends in snow cover at regional 
scales (Ackroyd et al., 2021), understanding snow darkening related to light-absorbing particles (LAP), (Huang 
et al., 2022; Sarangi et al., 2019, 2020) and improving snow albedo modeling (Hao et al., 2022).

2.3.  In-Situ Albedo Measurements

We measured albedo in the Caldor Fire (measured once on 21 January 2022) and the Creek Fire (measured 
on 27–28 February and 1 April 2021; Figure 2a). Spectral albedo measurements were made using a Spectral 
Evolution RS-3500 Portable Spectroradiometer (RS-3500) equipped with a 180° field of view diffuser mounted 
on an extendable 1.2 m pole (Figure 2b). The RS-3500 has a spectral resolution of 1 nm over the spectral range 
350–2500 nm. Measurements were made every 10 m along approximately flat terrain with one 100 m transect 
for each burn severity class (10 measurements per transect, with three observations, averaged together at each 
measurement point): high, moderate, and unburned. Soil burn severity for each fire was determined using maps 
produced by the U.S. Department of Agriculture Forest Service Burned Area Emergency Response (https://burn-
severity.cr.usgs.gov/products/baer) using field-checked, remotely-sensed pre- and post-fire visible reflectances 
(Key & Benson, 2006).

2.4.  Snowpack and Meteorological Observations

We used station-based observations of SWE, precipitation and solar radiation to examine the impacts of wild-
fire in burned and unburned areas in the Caldor and Dixie Fires. Daily SWE observations (1 October 2011–15 
April 2022) spanned the two MWDSs of interest from four stations in the California Cooperative Snow Survey 
Network (Rattlesnake, Robinson Cow Camp, Greek Store, and Alpha) and two stations from the Snowpack 
Telemetry Network (SNOTEL; Central Sierra Snow Laboratory and Echo Summit; Figure 2a). Two stations, 
Rattlesnake and Alpha, were burned in 2021 by the Dixie and Caldor Fires, respectively, but remained functional.

To characterize the frequency of MWDSs and place recent MWDS in a climatological context, we used daily 
precipitation spanning 1 October 1917–15 April 2022 from the Tahoe City National Weather Service Cooperative 
Observer Program. MWDS were defined as consecutive periods of time with no daily precipitation exceeding 
2.54 mm between 1 November and 31 March.

2.5.  Weather Regimes

To provide a synoptic-planetary perspective and compare atmospheric circulation patterns during the two 
MWDS winters, we used the weather regime catalog of Guirguis et al. (2022), which evaluates the daily joint 
phase relationships between four regionally important modes of atmospheric variability (Guirguis et al., 2020). 
We extended this product to include the winter of 2021–2022. We focus on the days of the MWDS period (30 
December–18 February) shared between the 2 years.

3.  Results
3.1.  Fire Activity Increased in Seasonal and Ephemeral Snow Zones

Fire detections show peaks during singular years (2008, 2018) and groups of years (2012–2016, 2020–2021; 
Figure 1a) across California's seasonal and ephemeral snow zones (Figure 1b). In calendar years 2020 and 2021 
(2020–2021 inclusive), an abrupt increase in snow zone fire detections occurred. Approximately 50% of total 
2001–2021 fire detections in seasonal snow zones and ∼35% in ephemeral snow regions occurred in 2020–2021. 
A factor of 9.8 increase in mean annual fire detections in the seasonal snow zone occurred in 2020–2021 compared 
with the 2001–2019 average. Fire activity in snow zones was widespread throughout 2001–2021 (Figure 1c), with 
a broad distribution of fire occurrence prior to 2020 (Figure 1d). However, very large fires including the Dixie, 

Figure 2.  (a) Map of stations and sample locations with fire names. (b) Zoomed-in map of Caldor Fire showing locations of snow, weather, and albedo observations, 
with elevation data from Abrams et al. (2020). (c) Albedo measurements from high burn severity forest during January (Caldor Fire). (d) Foreground shows burned 
debris and needlecast deposited onto the snow surface in moderate burn severity forest. (e) Changes in spectral snow albedo for unburned (gold), moderate burn severity 
(orange) and high burn severity (red) during January (Caldor), February (Creek Fire) and April (Creek Fire). Unburned data from the Caldor Fire in January were 
unavailable; the plot shows estimated unburned albedo using unburned data from Creek Fire adjusted upward by 0.04 to account for less grain-size growth of snow 
(Colbeck, 1982).

https://burnseverity.cr.usgs.gov/products/baer
https://burnseverity.cr.usgs.gov/products/baer
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Caldor, Creek Fires, and fire complexes elsewhere during 2020–2021 clustered fire detections in snow zones 
(Figure 1e).

3.2.  Increased Net Shortwave Radiation Following Wildfire

Snow albedo measurements in both the accumulation season (January and February) and the ablation season 
(April) show time-dependent decreases in snow albedo (Figure 2c). Broadband albedo decreased 25%–71%. The 
visible albedo (0.4–0.7 μm) decreased 17%–31% (moderate severity) and 45%–49% (high severity) compared to 
unburned during the accumulation season. In April, high (moderate) burn severity areas showed a visible albedo 
decrease of 60% (55%) compared to unburned areas. For the near-infrared (NIR; 0.7–2.5 μm), accumulation 
season declines ranged from 31% to 69% (moderate severity) to 47%–77% (high severity). We note that the 
decreased visible wavelength albedo is mainly due to light absorption by black carbon (Warren, 1982; Wiscombe 
& Warren, 1980), while decreased NIR albedo is likely due to a combination of increased grain size and light 
absorption by black carbon (Skiles & Painter, 2019; Warren, 1982; Wiscombe & Warren, 1980). Unlike dust, 
which has primary absorption in the visible wavelengths (He et al., 2019), black carbon is a “gray” absorber and 
can absorb throughout the solar spectrum. We translated our broadband snow albedo measurements to net short-
wave radiation using the Beer-Lambert Law (Hellström, 2000; Monsi & Saeki, 1953) following Koshkin (2022) 
and Landsat-based estimates of leaf area index (LAI; a proxy for vegetation canopy) in the Caldor Fire perimeter. 
With a 70% reduction in Caldor LAI (Figure S1 in Supporting Information S1), post-fire net shortwave radiation 
increased from 6.12 W m −2 (unburned) to 67.68 W m −2 (high severity) during the MWDS. Holding canopy 
constant and only changing albedo, the net radiation increased to 32.35 W m −2 whereas if the canopy is removed, 
but the albedo remains constant, the net radiation increased to 9.91 W m −2.

3.3.  Rapid Snowmelt During a Midwinter Dry Spell Following Wildfire

The long-term median MWDS at Tahoe City is 22 days. During water year (WY) 2022, Tahoe City experienced 
its second-longest MWDS (46 days). Since 1917, three of the five longest MWDS occurred since WY2011, 
including WY2015 (third longest, 43 days), WY2022 (second longest), and the record-setting WY2012 (60 days). 
Although WY2013 (tied for 11th with 36 days) did not experience as prolonged of a MWDS as WY2022, the 
well-below average precipitation following a wet start to the WY provides an object lesson year for comparison. 
In both WY2013 and WY2022, heavy precipitation during October–December produced substantial early season 
snowpacks (338–770 mm SWE), and was followed by dry conditions (Figure 3a) and similar radiation. Compared 
with WY2013, 5% more accumulated solar radiation occurred during WY2022 between 28 December–18 Febru-
ary period at the unburned Red Baron RAWS (2b) but approximately equal radiation between 28 December–1 
March (Figure S2 in Supporting Information S1).

SWE declined faster at the two burned sites, Alpha and Rattlesnake, compared to the unburned sites during 
WY2022's MWDS (Figure 3b). In contrast, all stations behaved similarly during the WY2013 MWDS (Figure 3c), 
though Rattlesnake began melting in mid-March. Compared to the date of maximum SWE, the SWE at unburned 
sites declined by 0%–4% in WY2013% and 0%–8% in WY2022 over the course of the dry period. During 
WY2013, Alpha and Rattlesnake declined by 2%–9% during the MWDS. However, in WY2022, burned stations 
declined 41%–45%, consistent with enhanced net shortwave radiation in burned environments (Figure 2). After 
a small precipitation event on 18 February 2022, snowpack continued to decline at Rattlesnake but remained 
consistent at Alpha before declining in late March. Compared to WY2013, snow at both Alpha and Rattlesnake 
disappeared earlier during WY2022 (Figures 3b and 3c).

3.4.  Midwinter Dry Spell Weather Regimes

Analysis of weather regimes (WR) reveals broad similarities between WY2013 and WY2022 during the MWDS 
(Figures 3d and 3e) and throughout the accumulation season (Figure S3 in Supporting Information S1). The 
bulk of snow accumulation in December during both years was associated with WR favoring wet conditions 
and snowfall (Figures S3 and S4 in Supporting Information S1; Guirguis et al., 2022). Beginning in late Decem-
ber (WY2013) or early January (WY2022) a WR shift occurred bringing atmospheric ridging conditions 
over/offshore from California (Figures S3 and S4 in Supporting Information  S1). Similar dry-type WRs but 
with varying frequencies occurred during the respective MWDS (Figures 3d and 3e). The cessation in SWE 
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Figure 3.  (a) Accumulated precipitation at Tahoe City during WY2013 and WY2022. (b) Snow water equivalent (SWE) as a fraction of peak SWE during water year 
(WY) 2022. (c) As in (b) but for WY2013. Primary dry weather regimes (WR) and their frequency derived from atmospheric reanalysis products (Guirguis et al., 2022) 
during the MWDS of 30 December–18 February of (d) WY2022, and (e) WY2013.
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accumulation is associated with the onset and persistence of WRs bringing persistent high pressure leading to a 
MWDS (Figures 3d and 3e). High pressure patterns were more persistent in WY2022 (Figure 3d). WY2013 was 
more variable with short-lived weather pattern changes allowing for small snow accumulation events (Figure 4b). 
These events appear as intermittent breakdowns of the ridging patterns and development of patterns (e.g., WR3) 
producing weak onshore flow (Figure 3e).

3.5.  Snow Remote Sensing Indicates Post-Fire Snowpack Decline

Despite similar conditions in snowpack at the beginning of each MWDS (Figures 3b and 3c) and generally simi-
lar meteorological conditions (Figures 3d and 3e and Figure S3 in Supporting Information S1), remote sensing 
shows widespread, rapid post-wildfire snowmelt throughout the accumulation and melt seasons within the Caldor 
Fire perimeter (Figure 4). Snow-covered area declined faster during January and February WY2022 compared 
to WY2013 (Figure 4a), with 50% less snow cover at the end of the WY2022 MWDS. Albedo resets following 
snowfall were more common in WY2013 than WY2022 (Figure 4b), with WY2022 demonstrating the lowest fire 
perimeter-average snow albedos on record in early February. Consistent with lower albedo (Figures 2c and 4b), 
melt occurred faster after storms in WY2022 compared to WY2013 (Figure 4a). Impacts within the fire perimeter 
are clear with over 50 fewer snow cover days by 30 April (Figure 4c), giving WY2022 the lowest snow cover days 
in the MODIS record. Dry conditions during November (Figure 3a) and melt-out of October snowfall (Figure 3b) 
contributed to the initial (1 January) lower cumulative days of snow cover in WY2022 (Figure 4c). In contrast, 
WY2013 was near-to-above average in terms of snow cover days until late April (Figure 4c).

Spatial comparisons for February mean snow cover fractions show WY2013 had near-to-slightly below the 2001–
2022 mean, whereas WY2022 had well-below mean snow cover fractions within the Caldor Fire perimeter (and 
Tamarack Fire perimeter; Figures 1e, 4d, and 4e). By 1 March, snow cover days were 20–50 days below average 
only in the lowest elevation (western-most) regions during WY2013 whereas strong correspondence between 
anomalous below-mean snow cover days and the Caldor fire perimeter occur during WY2022 (Figures 4f and 4g). 
These differences increased as the season progressed (Figure S7 in Supporting Information S1).

4.  Discussion
Wildfires in seasonal and ephemeral snow zones are expected. Our identified abrupt, near-10-fold increase in fire 
activity during 2020–2021 in California's snow zones relative to the previous 18 years (Figure 1) is embedded 
in an increasing trend in California wildfire activity (Alizadeh et al., 2021; Gleason et al., 2019). Conditions 
conducive to large, severe fires will increase as the climate warms (Abatzoglou & Williams, 2016; Gutierrez 
et al., 2021; Williams et al., 2019) and becomes more volatile (Gershunov et al., 2019). This implies future fire 
activity in snow zones will more frequently resemble 2020 and 2021.

Decreases in both albedo (Figures 2b–2d) and canopy (Figure S1 in Supporting Information S1) increase the net 
shortwave radiation and accelerate snowmelt during MWDS (Figure 3c; Gleason et al., 2013). Additional radia-
tion reduces snow covered area (Figure 4c) directly and indirectly through positive feedbacks (Koshkin, Hatchett, 
& Nolin, 2022). Similar results associated with local and long-range transport and deposition of fire-generated 
LAPs occurs in seasonally snow-covered regions (Gleason et al., 2019; Uecker et al., 2020) and glacial environ-
ments (Aubry-Wake et al., 2022). However, these studies focused on the ablation season rather than the accu-
mulation season. Dust deposition could further accelerate wildfire-induced midwinter melt (Huang et al., 2022). 
Similar to dust-on-snow (Skiles & Painter, 2019), in post-fire environments, radiative forcing-induced positive 
feedbacks likely occur between grain size growth, albedo decline from melt-driven LAP accumulation, and 
larger-scale albedo decline as the land surface becomes snow-free (Huang et al., 2022; Koshkin, Hatchett, & 
Nolin, 2022; Sterle et al., 2013; Warren, 1982). Despite some of the lowest midwinter albedos on record, further 
investigation of why our remotely sensed WY2022 albedo values did not decline to values as low as measured 
in-situ are warranted.

Our results indicate strong potential for enhanced post-fire midwinter melt under persistent high pressure 
(Figure 3d). Given the limited supply of charred debris, albedo-driven changes in net shortwave will dominate 
post-fire energy balance in the short-term (<10 years; Gleason et al., 2019). However, persistent canopy losses 
(requiring tens of years for forest canopy recovery; Bright et al., 2019) will eventually drive the post-fire snow-
pack energy balance.
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Figure 4.  (a) Snow covered area (km 2) for Caldor Fire perimeter between 1 January and 31 May for water years (WYs) 2001–2022 (light dashed lines) with WY2013 
and WY2022 shown as thick blue and red lines, respectively. (b) As in (a) but for snow albedo. (c) As in (a) but for snow covered days. February snow cover fractions, 
as differences from 2001 to 2022 mean for (d) WY2013 and (e) WY2022. End of February snow cover days (cumulative from 1 October), as differences from 2001 to 
2022 mean for (f) WY2013 and (g) WY2022. Gray values indicate zeros.
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Guirguis et  al.  (2022) found increasing frequencies of three midwinter dry patterns that parallel observed 
declines in California snowpack (Mote et al., 2018). These same atmospheric circulation patterns are associated 
with the MWDSs in WY2013 and WY2022. While both years demonstrate similar weather patterns, WY2013 
had slightly more active weather compared to WY2022 (Figure S3 in Supporting Information  S1). Because 
warmer-than-average conditions are expected during WRs 1, 4, and 5 (Guirguis et al., 2022), we also investigated 
the role of temperature. Tahoe City is influenced by nocturnal inversions, so we compared MWDS temperatures 
at the mid-slope Echo Summit SNOTEL. WY2022 experienced warmer minimum (0.5°C) and maximum (0.5°C) 
temperatures than WY2013, with both years observing multiple nights with minimum temperatures above freez-
ing (Figure S5 in Supporting Information  S1). Warm nights and copious solar radiation (Figures S2 and S5 
in Supporting Information S1) facilitated region-wide melt, amplifying the effects of post-fire net shortwave 
radiation in burned areas but insufficient to drive rapid melt in unburned areas (Figures 3b and 4a). Sunny and 
non-freezing conditions are likely responsible for the slightly greater midwinter melting outside burned areas in 
WY2022 compared to WY2013, evident in areas north of the Caldor Fire (Figures 4e and 4g; Figures S6 and S7 
in Supporting Information S1). These general meteorological consistencies between the years imply observed 
melt patterns resulted predominantly from altered land surface conditions rather than meteorological differences.

Amplified post-fire midwinter melt raises concern for hydrologic resources and hazards. Enhanced temperature- 
and radiation-driven midwinter melt with greater snow accumulation (Maxwell & Clair,  2019) could elevate 
soil moisture earlier in the season and make snowpacks more hydrologically-active (Brandt et  al.,  2022). 
Additional soil moisture increases runoff efficiency and soil pore water pressures, leading to elevated runoff 
during rain-on-snow events (Heggli et  al.,  2022) and higher probabilities for shallow landslides (Collins & 
Znidarcic, 2004; Iverson, 2000). Midwinter runoff affects reservoir operations as traditional regulatory frame-
works may not allow for additional reservoir storage when flood risk reduction is the primary management 
concern (Maina & Siirila-Woodburn, 2020; Williams et al., 2022). Moreover, higher rates of sediment influx 
from burned areas entering reservoirs (Sankey et al., 2017; B. P. Murphy et al., 2018) reduce water quality (S. F. 
Murphy et al., 2012) and damage infrastructure (Randle et al., 2021).

The compounding effects of post-fire impacts on snow and MWDSs pose challenges for climate projections and 
operational forecasts. More frequent wildfire in snow zones and additional dry days are expected with warming 
(Hatchett et al., 2022; Polade et al., 2014; Westerling, 2018). Midwinter snowpack loss and early melt leads to 
drier late-season soil and vegetation conditions (Harpold & Molotch, 2015). Skillfully predicting WR associated 
with anomalous wet or dry conditions at subseasonal-to-seasonal scales provides lead-time to implement miti-
gation measures for altered hydrology (Guirguis et al., 2022). However, mitigation requires skillful hydrologic 
forecasts. If post-fire effects on snow exacerbate trends toward elevated runoff (Uzun et  al.,  2021; Williams 
et al., 2022), direct updates of snow albedo to operational hydrologic models and improved parameterizations of 
fire-snow relationships in Earth-system models is required (Hao et al., 2022).

5.  Conclusions
We identified abrupt increases in wildfire activity in California's snow zones in 2020 and 2021 that reduced 
both snow albedo and canopy cover and likely accelerated snowmelt during an extended mid-winter dry spell. 
To enhance water-supply reliability, reduce flood hazards, and inform adaptation strategies, aspects impacted 
by the growing geographical overlap between wildfire and mountain snowpacks, we recommend improving 
process-based representation and inclusion of wildfire's impacts in the snow zone in short- and long-term opera-
tional hydrologic and Earth system models.

Data Availability Statement
MODIS fire detections are available from the NASA Fire Information for Resources Management System 
(https://firms.modaps.eosdis.nasa.gov/). The ASTER Global Digital Elevation Model V003 is available from the 
NASA EOSDIS Land Processes DAAC (https://doi.org/10.5067/ASTER/ASTGTM.003). Weather regime data 
(Guirguis et al., 2022) is available from the UCSD library digital collections (https://doi.org/10.6075/J089161B). 
The University of Arizona Snow Water Equivalent Product is available from the NASA National Snow and 
Ice Data Center Distributed Active Archive Center (https://doi.org/10.5067/0GGPB220EX6A). Station data 
is publicly available for SNOTEL stations from the United States Natural Resources Conservation Agency 

https://firms.modaps.eosdis.nasa.gov/
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https://doi.org/10.6075/J089161B
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(https://wcc.sc.egov.usda.gov/reportGenerator/) with RAWS data available from the Desert Research Institute 
(https://raws.dri.edu) and COOP data available from the Applied Climate Information System (https://www.
rcc-acis.org). The MODIS data is available from the Zenodo repository: (Rittger & Hatchett, 2023; https://doi.
org/10.5281/zenodo.7522988). Spectrometer data is available from the Zenodo repository (Koshkin, Nolin, & 
Hatchett 2022; https://doi.org/10.5281/zenodo.7545408).
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